Appl. Sci. 2019, 9, 5269 19 of 20
7.
Lee, D.; Park, Y.G.; Park, J.B.; Roh, J.H. Very short-Term wind power ensemble forecasting without numerical
weather prediction through the predictor design. J. Electr. Eng. Technol. 2017, 12, 2177–2186.
8.
Martínez-Álvarez, F.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J. A Survey on Data Mining Techniques
Applied to Electricity-Related Time Series Forecasting. Energies 2015, 8, 13162–13193. [CrossRef]
9.
Burda, M.; Štˇepniˇcka, M.; Štˇepniˇcková, L. Fuzzy Rule-Based Ensemble for Time Series Prediction: Progresses
with Associations Mining. In Strengthening Links Between Data Analysis and Soft Computing; Springer
International Publishing: Cham, Switzerland, 2015; Volume 315, pp. 261–271. [CrossRef]
10.
Yadav, M.; Jain, S.; Seeja, K.R. Prediction of Air Quality Using Time Series Data Mining. In Opinion Mining of
Saubhagya Yojna for Digital India; Springer: Singapore, 2019; Volume 55, pp. 13–20. [CrossRef]
11.
Wang, C.; Zheng, X. Application of improved time series Apriori algorithm by frequent itemsets in
association rule data mining based on temporal constraint. Evol. Intell. 2019. [CrossRef]
12.
Gajowniczek, K.; Zabkowski, T. Data mining techniques for detecting household characteristics based on
smart meter data. Energies 2015, 8, 7407–7427. [CrossRef]
13.
Singh, S.; Yassine, A. Big Data Mining of Energy Time Series for Behavioral Analytics and Energy
Consumption Forecasting. Energies 2018, 11, 452. [CrossRef]
14.
Khosravi, A.; Nahavandi, S.; Creighton, D. Construction of optimal prediction intervals for load forecasting
problems. IEEE Trans. Power Syst. 2010, 25, 1496–1503. [CrossRef]
15.
Quan, H.; Srinivasan, D.; Khosravi, A.; Nahavandi, S.; Creighton, D. Construction of neural network-based
prediction intervals for short-term electrical load forecasting. In Proceedings of the IEEE Symposium on
Computational Intelligence Applications in Smart Grid (CIASG), Singapore, 16–19 April 2013; pp. 66–72.
16.
Rana, M.; Koprinska, I.; Khosravi, A.; Agelidis, V.G. Prediction intervals for electricity load forecasting using
neural networks. In Proceedings of the International Joint Conference on Neural Networks, Dallas, TX, USA,
4–9 August 2013.
17.
Moulin, L.S.; da Silva, A.P.A. Neural Network Based Short-Term Electric Load Forecasting with Confidence
Intervals. IEEE Trans. Power Syst. 2000, 15, 1191–1196.
18.
Liu, H.; Han, Y.H. An electricity load forecasting method based on association rule analysis attribute
reduction in smart grid. Front. Artif. Intell. Appl. 2016, 293, 429–437.
19.
Chiu, C.C.; Kao, L.J.; Cook, D.F. Combining a neural network with a rule-based expert system approach for
short-term power load forecasting in Taiwan. Expert Syst. Appl. 1997, 13, 299–305. [CrossRef]
20.
Box, G.E.P.; Tiao, G.C. Intervention Analysis with Applications to Economic and Environmental Problems.
J. Am. Stat. Assoc. 1975, 70, 70–79. [CrossRef]
21. Chatfield, C. Time-Series Forecasting, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000.
22.
Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne,
Australia, 2018.
23.
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer
New York Inc.: New York, NY, USA, 2001.
24.
Heaton, J. Introduction to Neural Networks for Java, 2nd ed.; Heaton Research, Inc.: Washington, DC, USA, 2008.
25.
Jeff, H. The Number of Hidden Layers. Available online: https://www.heatonresearch.com/2017/06/01/
hidden-layers.html (accessed on 21 August 2017).
26.
Riedmiller, M. Rprop-Description and Implementation Details. Available Online: http://www.inf.fu-berlin.
de/lehre/WS06/Musterererkennung/Paper/rprop.pdf (accessed on 1 September 2017).
27.
Chang, H.; Nakaoka, S.; Ando, H. Effect of shapes of activation functions on predictability in the echo state
network. arXiv 2019, arXiv:1905.09419.
28.
Agrawal, R.; Imieli´nski, T.; Swami, A. Mining Association Rules Between Sets of Items in Large Databases.
SIGMOD Rec. 1993, 22, 207–216. [CrossRef]
29.
Frawley, W.J.; Piatetsky-Shapiro, G.; Matheus, C.J. Knowledge Discovery in Databases—An Overview.
Knowl. Discov. Databases 1992, 1–30.. [CrossRef]
30. Hyndman, R.J.; Fan, Y. Sample Quantiles in Statistical Packages. Am. Stat. 1996, 50, 361–365.
31.
Quan, H.; Srinivasan, D.; Khosravi, A. Uncertainty handling using neural network-based prediction intervals
for electrical load forecasting. Energy 2014, 73, 916–925. [CrossRef]
32.
Czado, C.; Gneiting, T.; Held, L. Predictive Model Assessment for Count Data. Biometrics
2009
, 65, 1254–1261.
[CrossRef] [PubMed]